Lnk Inhibits Tpo–mpl Signaling and Tpo-mediated Megakaryocytopoiesis
نویسندگان
چکیده
Thrombopoietin (Tpo) is the primary cytokine regulating megakaryocyte development and platelet production. Tpo signaling through its receptor, c-mpl, activates multiple pathways including signal transducer and activator of transcription (STAT)3, STAT5, phosphoinositide 3-kinase-Akt, and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor and immunoreceptor signaling. Here, we show that Lnk overexpression negatively regulates Tpo-mediated cell proliferation and endomitosis in hematopoietic cell lines and primary hematopoietic cells. Lnk attenuates Tpo-induced S-phase progression in 32D cells expressing mpl, and Lnk decreases Tpo-dependent megakaryocyte growth in bone marrow (BM)-derived megakaryocyte culture. Consistent with this result, we found that in both BM and spleen, Lnk-deficient mice exhibited increased numbers of megakaryocytes with increased ploidy compared with wild-type mice. In addition, Lnk-deficient megakaryocytes derived from BM and spleen showed enhanced sensitivity to Tpo during culture. The absence of Lnk caused enhanced and prolonged Tpo induction of STAT3, STAT5, Akt, and MAPK signaling pathways in CD41+ megakaryocytes. Furthermore, the Src homology 2 domain of Lnk is essential for Lnk's inhibitory function. In contrast, the conserved tyrosine near the COOH terminus is dispensable and the pleckstrin homology domain of Lnk contributes to, but is not essential for, inhibiting Tpo-dependent 32D cell growth or megakaryocyte development. Thus, Lnk negatively modulates mpl signaling pathways and is important for Tpo-mediated megakaryocytopoiesis in vivo.
منابع مشابه
Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis
Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to g...
متن کاملOcta-Arginine Mediated Delivery of Wild-Type Lnk Protein Inhibits TPO-Induced M-MOK Megakaryoblastic Leukemic Cell Growth by Promoting Apoptosis
BACKGROUND Lnk plays a non-redundant role by negatively regulating cytokine signaling of TPO, SCF or EPO. Retroviral expression of Lnk has been shown to suppress hematopoietic leukemic cell proliferation indicating its therapeutic value in cancer therapy. However, retroviral gene delivery carries risks of insertional mutagenesis. To circumvent this undesired consequence, we fused a cell permeab...
متن کاملLnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2.
In addition to its role in megakaryocyte production, signaling initiated by thrombopoietin (TPO) activation of its receptor, myeloproliferative leukemia virus protooncogene (c-Mpl, or Mpl), controls HSC homeostasis and self-renewal. Under steady-state conditions, mice lacking the inhibitory adaptor protein Lnk harbor an expanded HSC pool with enhanced self-renewal. We found that HSCs from Lnk-/...
متن کاملHigh-level expression of Mpl in platelets and megakaryocytes is independent of thrombopoietin.
Thrombopoietin (TPO) is a hematopoietic growth factor that regulates megakaryocytopoiesis and platelet production through binding to its receptor, Mpl, encoded by the c-mpl proto-oncogene. Circulating levels of TPO are regulated by receptor-mediated uptake and degradation. To better understand this mode of TPO regulation, we examined whether expression of Mpl was regulated by its ligand. Using ...
متن کاملDistinct effects of thrombopoietin depending on a threshold level of activated Mpl in BaF-3 cells.
Thrombopoietin (TPO) plays a critical role in megakaryopoiesis through binding to its receptor Mpl. This involves activation of various intracellular signaling pathways, including phosphoinositide 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) pathways. Their precise role in TPO-mediated proliferation, survival and differentiation is not fully understood. In the present study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 200 شماره
صفحات -
تاریخ انتشار 2004